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POSSIBLE OCCURRENCE OF BOUNDARY SHOCK WAVES 

By E. Dale Martin 
Ames Research Center 

SUMMARY 


The poss ib le  occurrence of a viscous region near a surface from which 
the re  i s  rap id  efflux of gas, accompanied by la rge  heat  t r a n s f e r ,  i s  postu­
l a t e d  and inves t iga ted  t h e o r e t i c a l l y .  Such a viscous region, denoted as a 
boundary shock wave, may o c c w  i n  t h e  case of a l a rge  high-speed meteor enter­
ing t h e  e a r t h ' s  atmosphere. The conditions across  a boundary shock wave and 
i ts  s t ruc tu re  a r e  ca lcu la ted  from t h e  appropriate  macroscopic equations 
reduced t o  closed-form expressions under t h e  r e s t r i c t i o n  of a pe r fec t  gas 
flowing a t  constant t o t a l  enthalpy. 

INTRODUCTION 


The purposes of t h i s  repor t  are t o  introduce t h e  concept and t o  pos tu la te  
t h e  occurrence of boundary shock waves. A boundary shock wave may be defined 
as a t h i n  region of viscous flow adjacent t o  a surface from which gas i s  flow­
ing a t  a very high r a t e  with l a rge  heat  t r a n s f e r .  The flow i n  t h i s  region i s  
dominated by heat conduction and viscous compressive s t r e s s e s  whose rap id  
decay causes rap id  var ia t ions  of t h e  flow proper t ies  over a s m a l l  d is tance.  
A de ta i l ed  discussion of t h e  causes of boundary shock waves i s  given i n  t h e  
sec t ion  following t h e  Introduct ion.  

If a boundary shock wave can occur as postulated,  t h e  d i s t i n c t  region of 
viscous flow would be poss ib le  only with high inf lux  Reynolds number and with 
a source of high heat  t r a n s f e r  (such as in tense  r ad ia t ion  being absorbed) a t  
t h e  w a l l .  This high Reynolds number theory i s  the  opposite l imi t ing  case t o  
t h e  more usual  m a s s  i n j ec t ion  o r  vapor ab la t ion  at a r a t e  s m a l l  enough t h a t  
t h e  inf lux  does not appreciably a l t e r  t h e  boundary-layer character  of an 
ex te rna l  flow along t h e  w a l l .  I n  t h e  l a t t e r  case of mass inf lux  a t  a s m a l l  
r a t e  (and small in f lux  Reynolds number), t he  in j ec t ed  flow i s  e n t i r e l y  viscous, 
whereas in j ec t ed  flow a t  high inf lux  Reynolds number must be e s s e n t i a l l y  invis­
c i d  a shor t  dis tance from t h e  surface.  The boundary shock wave i s  therefore  a 
"quick-transit ion region" belonging t o  t h e  c l a s s  of asymptotic phenomena dis­
cussed by Fr iedr ichs  (ref.  1). The boundary shock is  analogous both t o  a 
boundary layer ,  i n  which t h e  flow i s  along a w a l l ,  and t o  a shock wave, i n  
which t h e  flow i s  normal t o  t h e  t h i n  viscous region ( see  f i g .  1; nota t ion  i s  
defined i n  appendix A ) .  

The boundary shock phenomenon may be important i n  understanding t h e  flow 
over a c e r t a i n  c l a s s  of meteoric f i r e b a l l s .  Large stone meteors t h a t  en te r  
t h e  e a r t h ' s  atmosphere a t  very high ve loc i ty  have a high r a t e  of mass t r a n s f e r  
from t h e  surface by vapor ab la t ion  as a r e s u l t  of t h e  in tense  r a d i a t i v e  heat­
ing of t h e  surface by t h e  extremely high temperature a i r  behind t h e  shock wave 
( see  refs. 2 t o  5 ) .  When t h e  ab la t ion  r a t e  i s  so l a rge  t h a t  t h e  dis tance,  L, 



from t h e  forward molten surface of t he  meteor t o  t h e  in t e r f ace  between t h e  a i r  
and t h e  vaporized meteoric mater ia l  is  much g rea t e r  than the  "viscous length," 
zv, then R% E L/ZV i s  la rge  and a boundary shock wave i s  postulated t o  be 
present i n  t h e  vapor flow, with inv i sc id  flow j u s t  outs ide it. (See f i g .  2, 
which represents  t h e  flow near t h e  s tagnat ion point  of a b lunt  body.) 

A boundary shock wave may a l s o  occur i n  t h e  flow of a gas out of a porous 
w a l l  i f  t he re  i s  a s t rong  source of heat ,  such as r a d i a t i o n  being absorbed a t  
t h e  surface and conducted back i n t o  the  w a l l  and gas i n  t h e  pores.  The gen­
eral  theory t o  be developed below w i l l  apply t o  t h a t  case i f  t h e  flow can be 
laminar, not tu rbulen t .  

The boundary shock wave w i l l  be analyzed here from t h e  macroscopic, o r  
continuum, point  of view. The thermodynamic and flow var iab les  must s a t i s f y  
t h e  c l a s s i c a l  macroscopic conservation l a w s ,  which w i l l  be approximated by 
using t h e  Navier-Stokes equations of one-dimensional flow. The r e s u l t s  i n  t h e  
general  theory w i l l  be l imi t ed  by the  a p p l i c a b i l i t y  of t h e  approximate l i n e a r ,  
i . e . ,  first order ,  t r anspor t  l a w s  ( t h e  s t r e s s - s t r a i n  r a t e  r e l a t ionsh ip  and 
t h e  heat-conduction l a w )  of t h e  Navier-Stokes formulation. I f  t he  gradients  
become too  s teep,  so  t h a t  t h e  gas i s  too  far out of mechanical equilibrium, 
these  t ranspor t  l a w s  w i l l  not give a very good approximation, and t h i s  must be 
kept i n  mind. It would be des i rab le  t o  have a comparable microscopic ana lys i s  
f o r  comparison, but  t h e  s t a t e  of  t he  a r t  i n  nonequilibrium k ine t i c  theory f o r  
flow near surfaces  may not a t  present be sophis t ica ted  enough t o  permit such 
an ana lys i s .  The one-dimensional macroscopic equations t o  be used here t o  
study t h e  flow through t h e  boundary shock wave a r e  t h e  same as those t h a t  have 
been used successful ly  i n  t h e  study of shock-wave s t ruc tu re .  Professor 
Liepmann and h i s  coworkers ( r e f .  6) have shown tha.t t h e  s t ruc tu re  of most 
shock waves, e spec ia l ly  i n  the  downstream port ion,  i s  described very wel l  by 
the  Navier-Stokes equations.  The s t ruc tu re  of a boundary shock wave corre­
sponds i n  many cases t o  a downstream port ion of a simple-shock-wave so lu t ion .  
(Note then t h a t  t h e  boundary shock may be e n t i r e l y  subsonic.)  

Calculation of t h e  flow through a boundary shock w i l l  be based l a rge ly  on 
t h e  wealth of ex i s t ing  l i t e r a t u r e  (see r e f s .  6 t o  2'7) on shock waves and t h e i r  
s t ruc tu re .  The re la t ionships  between t h e  s t a t e s  and flow variables  on both 
s ides  of a shock wave have analogous counterparts i n  re la t ionships  across  a 
boundary shock which depend on t h e  heat- t ransfer  coe f f i c i en t  a t  the  boundary 
as w e l l  as on t h e  thermodynamic s t a t e s  ( t o  be shown). 

The sec t ions  which follow i n  t h i s  repor t  w i l l  include: (1)a discussion 
of t he  causes of  boundary shock waves; (2)  development of t h e  general  theory 
f o r  one-dimensional, laminar, steady flow through a boundary shock i n  a per­
f e c t  gas with longi tudina l  Prandt l  number equal t o  uni ty ,  including e x p l i c i t  
expressions f o r  t h e  jump conditions,  t h e  heat-conduction coe f f i c i en t  a t  the  
w a l l ,  and t h e  s t ruc tu re ,  o r  va r i a t ion  of proper t ies  through the  boundary shock; 
and (3)  an approximate spec ia l  appl ica t ion  of t he  general  theory t o  t h e  spe­
c i a l  case of very r ap id  vapor ab la t ion  from a b lunt  body, with the  proper t ies  
of a stone meteor, en te r ing  t h e  e a r t h ' s  atmosphere a t  high speed. 
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CAUSES OF BOUNDARY SHOCK WAVES 

Consider a gas flowing out of a near ly .plane wall ( f i g .  l ( c ) )  by e i t h e r  
blowing through pores i n  t h e  wall or vapor ab la t ion ,  with r ad ia t ive  heat f lux ,  
-qr, being absorbed a t  t h e  wall ( t o  t h e  l e f t  of b )  i n  both cases .  Let t he  
in f lux  Reynolds number, R%, be l a rge  enough t h a t  most of t h e  flow within 
length L i s  inv i sc id .  Since the re  i s  no source of viscous e f f e c t s  t o  t h e  
r i g h t  of b ,  any viscous e f f e c t s  must o r ig ina t e  a t  t h e  wall ( t o  t h e  l e f t  of b). 
To understand t h e  o r i g i n  of t h e  viscous e f f e c t s  i n  b t o  e ,  we must examine 
t h e  mechanism of mass t r a n s f e r  within t h e  region from s t o  b .  

Consider f i r s t  t h e  case of blowing through very s m a l l  pores.  A t  b t h e  
ve loc i ty  has become e s s e n t i a l l y  perpendicular t o  the  w a l l .  Assume t h a t  -q, 
i s  absorbed within a very shor t  dis tance in s ide  t h e  surface s and i s  con­
ducted back through t h e  w a l l  and i n t o  and back through t h e  gas i n  t h e  holes 
( t o  t h e  l e f t  i n  f i g .  l(c)) a t  a high r a t e .  I n  a one-dimensional flow t h e  
viscous-compressive s t r e s s  and heat-conduction f lux  a re ,  respec t ive ly ,  

so  t h a t  

T/q, = -g(du/cp dT) 

where 

and 
(4) 


and where l%i s  t h e  “longi tudinal  Prandt l  number, p i s  t h e  shear-viscosi ty  
coe f f i c i en t ,  A i s  t h e  second v i scos i ty  coe f f i c i en t ,  IC i s  the  bulk v i scos i ty  
coe f f i c i en t ,  k i s  t h e  coe f f i c i en t  of thermal conductivity,  i s  t h e  spe­
c i f i c  heat a t  constant pressure,  u i s  t h e  ve loc i ty ,  and T c?is t he  tempera­
t u r e .  I n  the  e f f ec t ive  one-dimensional flow j u s t  ins ide  t h e  holes ,  t he  la rge  
heat f l u x ,  -qc, t o  t h e  l e f t  i s  accompanied by an e f f ec t ive  viscous-compressive 

N 

s t r e s s  T. Unless Pr i s  zero o r  i n f i n i t e ,  heat conduction i n  a compressible 
gas i s  i n  general  always accompanied by a viscous s t r e s s .  Recall  a l s o  from 
k ine t i c  theory (e.g. ,  f o r  a monatomic gas, see r e f .  6, p. 1317) t h a t  t h e- -
thermodynamic pressure i s  p = ( 1 / 3 ) p ( ?  + 2cz2) and p - T = pel2 (where 
u + c1 and c2 a r e  t h e  components of molecular ve loc i ty  i n  t h e  x d i r ec t ion  
and i t s  normal, respect ively,  and (-) i s  t h e  average weighted by t h e  dis­
t r i b u t i o n  funct ion,  so  t h a t  T = ( 2 / 3 ) p ( ~ ~ ~- e lz ) .  The viscous s t r e s s  I- i s  
d i f f e ren t  from zero i f  t h e  averages of t h e  d i f f e ren t  components of t h e  random 
veloc i ty  a r e  not equal.  They evident ly  a r e  not equal i n  t h e  presence of a 
l a rge  heat-conduction flux, q, = pc2c1, which i t s e l f  i s  d i f f e ren t  from zero 
because of t h e  asymmetry of el. (Here cz  = elz + 2cz2 . )  The asymmetry-
of c1 i n  general  makes i t s  average squared value d i f f e ren t  from cz2.  
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Furthermore, t h e  viscous s t r e s s  j u s t  i n s ide  t h e  holes  cannot end abrupt ly ,  but  
must decay within a f i n i t e  dis tance t h a t  i s  determined by t h e  equations of 
motion. Therefore t h e  viscous s t r e s s ,  and an accompanying heat f lux ,  e x i s t  
a l s o  a t  b .  Thus, i f  t he re  is  a s ign i f i can t  amount of heat  absorbed a t  t h e  
w a l l ,  viscous e f f e c t s  w i l l  be present  a t  b y  and t h e  region of t h e i r  decay i s  
the  boundary shock wave. 

I n  t h e  case of r ap id  vapor ab la t ion ,  consider only a mater ia l  t h a t  
vaporizes from a l i q u i d  surface and has no chemical reac t ions  a f t e r  t h e  vapor­
i za t ion .  Assume t h e  r ad ia t ion  i s  absorbed and t h e  molten mater ia l  is  vapor­
ized within a f e w  molecular diameters a t  s .  The high heat  conduction t o  t h e  
l e f t  within t h a t  region i s  developing t h e  conditions t h a t  w i l l  produce a 
viscous-compressive s t r e s s  i n  t h e  vapor S ta te :  T = (2/3)p(cZ2 - el2) ( f o r  a 
monatomic g a s ) .  Note t h a t  under mild conditions ( s m a l l  heat t r a n s f e r ,  low-
speed vaporizat ion) ,  t h e  vaporization takes  place revers ib ly ,  and t h e  vapor i s  
considered t o  be i n  equilibrium at  t h e  end of t h e  phase change. Under more 
extreme conditions (high r a t e  of r ad ia t ion  absorpt ion and heat conduction j u s t  
ins ide  the  surface,  producing t h e  high r a t e  of vaporization) one expects 
mechanical (e.g., t r a n s l a t i o n a l )  nonequilibrium t o  be s ign i f i can t  i n  the  
vaporization process.  Trans la t iona l  nonequilibriun i s  described macroscopi­
c a l l y  by t h e  concept of v i scos i ty .  A l a rge  r a t e  of heat  t r a n s f e r  ( t o  t h e  l e f t  
i n  f i g .  1 or  f i g .  3) a t  s and within E i s  accompanied by a time l a g  i n  
passing t h e  t r a n s l a t i o n a l  energy from the  a x i a l  mode (x d i r ec t ion )  on t o  t h e  
degrees of freedom of t h e  motion i n  t h e  d i r ec t ions  normal t o  the  x d i rec t ion .  
The l a g  makes el2 > c22; t h a t  i s ,  because of t h e  l ag ,  t h e  molecules with 
motion mostly normal t o  t h e  x d i r ec t ion  a r e  not moving (on t h e  average) 
qu i t e  as rap id ly  as those i n  t h e  x d i r ec t ion  ( r e l a t i v e  t o  the  mass ve loc i ty
U l  Y and a r e  therefore  tending not t o  break t h e i r  intermolecular bonds as rap­
i d l y .  The viscous s t r e s s  I- i s  a measure of t h i s  l a g .  (For polyatomic mol­
ecules the re  w i l l  a l s o  be a l a g  assoc ia ted  with t h e  r o t a t i o n a l  degrees of 
freedom, a l s o  a f f e c t i n g  7 . )  

The s t r e s s  I- develops rap id ly  during t h e  vaporizat ion because, i n  a 
pure l i q u i d  s t a t e ,  t h e  molecules a r e  e f f ec t ive ly  i n  contact and the re  i s  prob­
ably very l i t t l e  l a g  i n  t r a n s f e r r i n g  t h e  energy t o  modes normal t o  the  a x i a l  
motion; but  t he  l a g  develops as t h e  molecules acquire  t h e  add i t iona l  energy 
t h a t  w i l l  f r e e  them from t h e  cons t ra in ts  o f t h e  intermolecular forces ,  and as 
they begin t o  separate  from each o ther .  By t h e  time t h e  phase t r a n s i t i o n  i s  
completed (at  b ) ,  t h e  viscous s t r e s s  T can be represented by 
-r = (2/3)p(c2" - e,") = E du/dx. This s t r e s s  i s  accompanied by viscous d i s s i ­
pa t ion  of energy and an associated heat-conduction f l u x  which, i n  t h e  vapor 

__. 

s t a t e ,  can be represented by q, = pc2c1 = -k dT/dx. 

I n  t h e  above discussion, from the  microscopic (molecular) point  of view 
we see t h a t  t he re  i s  a tendency, which i s  measured by 7, f o r  t he  vaporization 
process t o  be retarded.  This has the  e f f ec t  of a compression opposing the  
expansion of t he  phase change, so I- < 0. Refer t o  f igu re  3, on which the  
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sketch and curves a r e  idea l ized  and qua l i ta t ive .*  Let t h e  m a s s  ve loc i ty  deriv­
a t i v e ,  du/dx, be separated i n t o  two terms ( e f f e c t s  of two cont r ibu t ions) ,  

2= (2)phase + 

where 

(dU/dx)phase t h e  cont r ibu t ion  represent ing t h e  tendency of t h e  molecules a t  
a s t a t i o n  x t o  break t h e i r  intermolecular bonds and sepa­
rate from each o ther  

(du/dx)visc t h e  re ta rd ing  e f f e c t  of v i scos i ty  on t h e  ve loc i ty  change 
( e f f e c t  of mechanical, o r  t r a n s l a t i o n a l ,  nonequilibrium); 
o r  a r e s i s t ance  t o  the  separat ion of t h e  molecules (associ­
a t ed  with T )  

A t  b ,  t he  term (dU/dx)phase has vanished and t h e  term (du/dx),is, has the  
value appropriate t o  a gas,  and is  given by ~ / p .  The e f f ec t  of (du/dx)visc 
between s and b i s  a downward s h i f t  from t h e  curve of (dU/dx)phase t o  give 
t h e  r e su l t i ng  mass ve loc i ty  der iva t ive ,  du/dx. I n  order f o r  t he  vaporizat ion 
process t o  be retarded by v i scos i ty ,  T must be negative,  s o  t h a t  t h e  ve loc i ty  
der iva t ive  (proport ional  t o  acce le ra t ion ) ,  du/dx, during t h e  phase change i s  
decreased by the  v i scos i ty .  This macroscopic reasoning i s  the re fo re  com­
p l e t e l y  i n  l i n e  with the  r e s u l t s  of reasoning on the  molecular l e v e l ,  above. 

The viscous e f f e c t s  t h a t  develop i n  the  vaporization process cannot end 
abrupt ly ,  but  must decay within a dis tance determined by t h e  conservation 
equations. That i s ,  although t h e  intermolecular bonds a r e  assumed t o  be over­
come very quickly,  t h e  l a g  i n  communicating the  t r a n s l a t i o n a l  energy t o  t h e  
l a t e r a l  degrees of freedom may take  much more time t o  accommodate. The region 
i n  which these  mechanical nonequilibrium e f f e c t s  re lax  (i.e . ,  viscous e f f e c t s  
decay) with dis tance from t h e i r  source i s  the  boundary shock wave. 

It may be noted t h a t ,  i n  order f o r  Tb t o  be negative as described 
above, t he  dens i ty  must undergo a s l i g h t  l'undershoot" a t  t he  end of t h e  vapor­
i z a t i o n  process,  and the  mass ve loc i ty  u undergoes a s l i g h t  "overshoot." 
Thus, near t he  end of t h e  vaporization process,  t h e  curve of ve loc i ty  versus 
dis tance ( f i g .  3) has a maximum poin t .  This overshoot i n  m a s s  ve loc i ty  i s  
ac tua l ly  exceedingly s m a l l ,  and t h e  slope of t he  ve loc i ty  curve a t  
x = xb = o + E i s  extremely s m a l l  i n  comparison t o ,  say, AU/E (s lope of 
dashed l i n e  on curve of u vs x ) .  The overshoot i n  ve loc i ty  may be explained 
q u a l i t a t i v e l y  by r e f e r r i n g  t o  f igu re  3. From f igu re  3 one can see t h e  over­
shoot i n  u ,  or  t h e  maximum point  on t h e  u curve, as corresponding t o  the  

_. . .  - .* On f igu re  3 the  curve of ve loc i ty ,  f o r  example, i s  highly d i s to r t ed .  
The change of u (or p )  during t h e  phase change, from s t o  b ,  i s  seve ra l  
orders  of magnitude g rea t e r  than  t h e  change from b t o  e .  A l s o  t h e  dis tance 
from b t o  e i s  seve ra l  orders of magnitude g rea t e r  than  t h e  d is tance  from 
s t o  b .  
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poin t  where du/dx goes through zero.  It i s  t h e  poin t  where (du/dx)phase 
has come back down t o  t h e  r e l a t i v e l y  very s m a l l  value equal t o  -(du/dx)visc 
before  vanishing. 

The arguments t h a t  have been presented i n  t h i s  s ec t ion  are not intended 
as proof t h a t  t h e  pos tu la ted  viscous e f f e c t s  w i l l  occur.  Although one does 
not expect t h a t  t h e  viscous e f f e c t s  w i l l  have vanished a t  b,  absolute  cer­
t a i n t y  as t o  whether o r  not Tb w i l l  be d i f f e r e n t  from zero i n  a given case,  
s o  t h a t  a boundary shock wave w i l l  occur, would depend on e i t h e r  adequate 
experimental v e r i f i c a t i o n  o r  on a rigorous ana lys i s  by nonequilibrium k i n e t i c  
theory of l i q u i d s  and gases f o r  t h e  phase- t ransi t ion region.  Only such an 
ana lys i s  could supply an exact value f o r  T b .  

The values of  t h e  stress Tb and t h e  hea t  conduction would be
“b

determined by solving simultaneously a l l  t h e  equations pe r t inen t  t o  a spec i f i c  
problem, as i s  done i n  t h e  example ca lcu la t ion  i n  t h e  last  sec t ion  of t h e  
ana lys i s .  However, t h e  general  theory of t h e  boundary shock can be worked out 
i n  terms of T~ and q , without spec i f i c  appl ica t ion ,  as i n  t h e  following
sec t ion .  ‘b 

GENERAL THEORY O F  THE PLANE LAMINAR BOUNDARY SHOCK WAVE 
I N  A PERFECT GAS WITH = 1 

The general  theory of t h e  laminar boundary shock wave i s  formulated 
independently of t h e  d e t a i l s  of t h e  mass-transfer process under t h e  assump­
t ions :  (1)t h e  flow i s  c lose  enough t o  mechanical equilibrium t h a t  t h e  
Navier-Stokes equations give a va l id  approximation t o  t h e  descr ip t ion  of  t h e  
macroscopic thermodynamic and flow variables;  and (2 )  t h e  geometrical s t ruc­
t u r e  of t h e  surface i s  of s m a l l  enough d e t a i l  t h a t  t h e  ve loc i ty  vector  can be 
considered t o  be e s s e n t i a l l y  one-dimensional (normal t o  t h e  w a l l )  i n  t h e  main 
por t ion  of t h e  region of i n t e r e s t .  This i s  equivalent t o  t h e  assumption 
E << 6 i n  t h e  previous sec t ion .  Then t h e  condi t ions across  t h e  boundary 
shock wave and t h e  s t ruc tu re  can be ca lcu la ted  from t h e  Navier-Stokes equa­
t ions  and depend only on t h e  values of t h e  macroscopic parameters a t  t h e  vapor 
boundary b . 

The exact equations f o r  conservation of  mass, momentum, and energy i n  
one-dimensional s teady flow i n  a nonaccelerating coordinate system are: 

d-(pu) = 0
d x  

d 
PU & (e + 21u2) = =(-q + uf )  
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where x i s  t h e  d is tance  t o  t h e  r i g h t  of t h e  boundary b ,  e i s  t h e  in t e rna l  
energy per  uni t  mass, and f i s  t h e  sum of t h e  "surface forces"  i n  t h e  x 
d i r ec t ion  on an element of m a s s .  I n  t h e  gas, 

f = - p + T  ( 8 )  

It i s  o f t en  convenient t o  discuss  t h e  equations i n  t e r m s  of  t h e  spec i f i c  
enthalpy, 

h = e + p/p (9) 

r a t h e r  than t h e  i n t e r n a l  energy. The equations of state f o r  a thermally and 
c a l o r i c a l l y  pe r fec t  gas are 

p = pRT, h = cpT, e = cvT 

where R ,  cp, and cv are constants  r e l a t e d  by 

I f  heat  t r a n s f e r  by conduction and r ad ia t ion  a r e  considered, w e  can wr i te  f o r  
t h e  heat  f l ux  i n  t h e  x d i r ec t ion  (pos i t i ve  t o  t h e  r i g h t ) :  

where qr i s  t h e  r a d i a t i v e  heat  f l ux .  Although rad ia t ion  i s  included, it 
w i l l  be assumed t h a t  t h e  gas i s  t ransparent  t o  r ad ia t ion  and t h a t  r ad ia t ion  
emitted by t h e  gas i n  t h e  boundary shock region can be neglected.  Thus, a l l  
r ad ia t ion  i s  assumed t o  be  emitted o r  absorbed outs ide t h e  region from b t o  
e ,  and q, i s  the re fo re  constant across  t h e  boundary shock. I n  t h e  Navier-
Stokes formulation t h e  viscous stress and t h e  conduction heat  f l u x  a r e  given 
by equations (1). 

The boundary condi t ions t o  be used with equations ( 3 ) ,  (6),and (7)  a re :  
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For s impl ic i ty ,  i n  t h e  following sec t ions ,  it w i l l  be assumed t h a t  
(eq.  (3 ) )  is  equal t o  un i ty .  This assumption i s  not over ly  r e s t r i c t i v e  s ince ,  

hl as Liepmann and h i s  coworkers point  out ,  Pr M 1 f o r  most real gases ( r e f .  6 ) .  
The r e s u l t ,  as has been shown f o r  shock waves and as w i l l  be shown i n  a la ter  
sec t ion  f o r  t h e  boundary shock (eq.  ( 5 7 ) ) ,  i s  t h a t  

a t  every poin t  i n  t h e  boundary shock. With t h i s  r e s u l t ,  it w i l l  be convenient 
t o  present  f u r t h e r  r e s u l t s  i n  terms of  

rv 
Conditions Across a Boundary Shock f o r  Pr  = 1 

The conditions across  a boundary shock wave a r e  analogous t o  the  
conditions across  an ordinary shock wave, including t h e  Rankine-Hugoniot r e l a ­
t i o n ,  t h e  Prandt l  r e l a t i o n ,  and o ther  normal-shock r e l a t i o n s  ( see ,  e.g., 
r e f .  10, pp. 57-64) and a r e  obtained i n  much t h e  same manner. 

In t eg ra t ion  of equations (5 ) ,  (6),and (7)  and use of t h e  remainder of 
equations (1)through (15) give 

where subscr ipt  e denotes a value as x -+a,t h a t  is ,  outs ide t h e  boundary 
shock. Note t h a t  t h e  assumption of  Fr = 1 has eliminated I- and q from 
equation ( I - ~ c ) ,  so  t h a t  t h e  t o t a l  enthalpy, h + (1/2)u2, i s  constant.  

To derive a r e l a t i o n  analogous t o  t h e  Rankine-Hugoniot r e l a t ion ,  combine 
(17a) and (1p)t o  obtain 
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Then multiply (18) by ue + ub t o  obta in  an expression for ue2 - ub2, which 
may be equated t o  another expression from (l7c) with t h e  r e s u l t i n g  r e l a t i o n  
analogous t o  the  "Hugoniot r e l a t ion"  ( c f .  r e f .  22, p .  6):  

This can be rearranged i n t o  a form analogous t o  what Liepmann and Roshko call .  
t h e  "Rankine-Hugoniot r e l a t i o n "  ( r e f .  10, p.  64) : 

We may p l o t  pe/p b versus pb / p  e'  which depends on ( - T ~ / P ~ )= (1/2)yMb2C hC 
(see  f i g .  4 ) .  Later remarks a r e  given concerning pos i t i ve  and negative values 
of t h i s  parameter. We may c a l l  t h i s  p l o t  a "Boundary-Shock Hugoniot Diagram,'' 
by analogy t o  t h e  Hugoniot Diagram f o r  a simple shock wave. 

Next i s  developed a r e l a t i o n  f o r  boundary shock waves which i s  analogous 
t o  (and, i n  t h e  case rb + 0, reduces t o )  t h e  Prandt l  r e l a t i o n  f o r  shock 
waves. Denoting the  speed of sound as 

a =e== 
we can wr i te  equation (18) as 

ae2 %2 + - rb 
ub - ue = y U , - y u b  'b% 

and (l'j'c) as: 

2 2 
-+ - - - - ue + - =ub2 ab ae2 1("> a*2 ~ 

2 y - 1  2 Y - 1  2 Y - 1  
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(Equation (23) m a y  b e  regarded as t h e  d e f i n i t i o n  of  a* and t h e  constant C .  
I n  cases  where Ub ,> ab,  a* i s  t h e  a c t u a l  value of  a i n  t h e  boundary shock 
wave where u = a.)  Note from equation (23) t h a t  

ab2 = ( y  - 1)c --2 ub2; ae2 = ( y  - 1 ) ~y - 1  - Y - 1  U e 2  

which may be subs t i t u t ed  i n t o  (22) t o  obta in  

Equation (24a) may be  f u r t h e r  manipulated t o  give f i n a l l y  

ueub = a*2 + 3 
Y + l  (Pe '.3 

For t h e  case of t h e  simple shock wave (Tb = 0 and t h e  "boundary" 3 -w) , t h e  
Prandt l  r e l a t i o n ,  which determines t h a t  flow through a shock wave must go from 
e i t h e r  supersonic t o  subsonic o r  vice versa  (see re f .  10, p .  5 7 ) ,  i s  recovered 
from equation (24b) .  For t h e  case of t h e  boundary shock, such a r e s t r i c t i o n  
i s  not imposed. 

Other u se fu l  r e l a t ionsh ips  across  t h e  boundary shock can now be developed 
as follows: Equations (23) and (24b) give two expressions f o r  (a*/ub)2 which, 
when equated, give an  equation t h a t  can be  rearranged i n t o  t h e  quadrat ic  form 

2(2) - 2B (2)+ A = 0 

where 

% E-ub 

a?, J 
10 




The so lu t ion  i s  

which i s  thus determined f o r  given y ,  %, and ch ( o r  given A and B ) .  To 
C

f i n d  t h e  pressure r a t i o ,  combine equations ( l7a)  and (1p)i n t o  t h e  form 

The temperature r a t i o  i s  obtained from t h e  thermal equation of s t a t e  i n  (10) 
and t h e  energy r e l a t i o n  ( l 7 c )  as 

The Mach number downstream of t h e  boundary shock, Me, can be found by wr i t ing
equation (1m)i n  t h e  form 

from which 

A s  an a l t e rna t ive ,  one could a l s o  use 

i n t o  which equations (29) and ( l7a)  may be subs t i t u t ed  t o  give 
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where pb/pe i s  given by (27) .  

The conditions prescr ibed by t h e  equations i n  t h i s  sec t ion  a r e  possible  
only i f  t h e  assoc ia ted  entropy production i s  pos i t ive ;  thus the  second l a w  of 
thermodynamics must supplement t h e  conservation equations,  (17) .  It can be 
expressed as 

where s i s  t h e  s p e c i f i c  entropy, A i s  i s  t h e  entropy production per un i t  
m a s s  due t o  t h e  i r r e v e r s i b l e  processes ( c f .  r e f s .  28 and 29) within t h e  bound­
a r y  shock wave, and &s i s  t h e  change i n  entropy due t o  heat t r a n s f e r  (exter­
n a l  process) across  t h e  boundary shock; o r  

The s t a t e  var iab le ,  entropy, can be obtained f o r  a per fec t  gas from 

Ps - sref = cp Zn -- ~ z n -
Tref 'ref 

With use of Sb as t h e  reference value and se as t h e  value of i n t e r e s t ,  
equation ( 3 2 )  leads t o  

F ina l ly ,  equations (31) and (33) give as t h e  required condition 
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An i n t e r e s t i n g  point  here i s  t h a t  t h e  dimensionless number on which t h e  curves 
on t h e  boundary-shock Hugoniot diagram ( f i g .  4) depend ( i n  addi t ion  t o  y )  i s  
j u s t  t h e  r a t i o  o f t h e  change of spec i f i c  entropy of an element of mass due t o  
t ranspor t  of entropy ( i . e . ,  exclusive of entropy production within t h e  m a s s  
e lement )across  t h e  boundary shock, t o  t h e  gas constant R, t h a t  is, ( c f .  
eqs.  (31))  

For given y and Ch, t h e  quan t i t i e s  [ ( y  - l) /R]Ais,  [ ( y  - l ) /R](se  - sb), 

pe/pb, pe/pb, Te/Tb, and Me can now be ca lcu la ted  and p l o t t e d  versus % 
using equations (25) through (34) .  The r e s u l t s  f o r  Ch, -> 0 a r e  shown i n  
f igu res  5 through 10. The p o s s i b i l i t y  of cases f o r  which Chc < 0 w i l l  be 
discussed l a t e r .  Although t h e  r e s u l t s  shown on t h e  f igu res  were computed f o r  
y = 5 / 3 ,  they a r e  q u a l i t a t i v e l y  t h e  same f o r  o ther  values of y and a r e  eas­
i l y  computed from equations given here in .  

It i s  important t o  note f irst  of a l l  t h a t  t he  densi ty  r a t i o  given by 
equation (27) and t h e  o ther  quan t i t i e s  given i n  f igures  5 through 10 a r e  
double-valued because t h e  quadratic equation ( 2 5 )  has two roo t s .  The second 
l a w  of thermodynamics ( i n  t h e  form of eq. ( 3 4 ) )  determines t h a t  only t h e  minus 
s ign  i n  (27) i s  poss ib le  s ince,  as seen i n  f igu re  4, t he  roots  corresponding 
t o  t h e  plus  s ign,  which a r e  shown as dashed l i n e s ,  a r e  character ized by nega­
t i v e  entropy production. A s  a matter of i n t e r e s t ,  t he  t o t a l  spec i f i c  entropy 
change i s  shown i n  f igu re  6 t o  point  out t h a t  it i s  negative i n  some cases 
where t h e  entropy production i s  pos i t i ve  as required by t h e  second l a w  of 
thermodynamics. Figure 6 i s  presented simply t o  i l l u s t r a t e  t h i s  f a c t .  It i s  
i n t e r e s t i n g  t o  compare f igures  5 and 6.  The difference between t h e  t o t a l  
entropy change and t h e  entropy production is ,  of course, t h e  nondiss ipat ive 
pa r t  of t h e  entropy change, t h a t  i s ,  t he  t ranspor t  of entropy due t o  heat  con­
duction ( see .  eq. ( 3 5 ) ) .  

From f igures  7 through 10 we see t h a t  t h e  case f o r  which Ch, = 0 i s  
obviously s ingular .  For t h e  l imi t ing  case Ch, = 0 t he re  i s  no boundary 
shock. If the  e f f lux  i s  subsonic (Mb < 1)and Ch, -+ 0, the  boundary shock 

If t h e  e f f lux  i s  supersonic (% > 1) and Ch, 3 0, thesimply vanishes. 
r e s u l t s  correspond t o  a simple shock wave with no boundary, t h a t  is ,  t h e  bound­
a r y  shock becomes a detached simple shock wave. ( T h i s  l a t t e r  case, t h e  
detached shock wave, i s  known t o  have been observed experimentally within t h e  
gas e jec ted  supersonical ly  from a porous b lunt  body ( r e f .  30). This has been 
r e fe r r ed  t o  as "shocking down" of t he  in j ec t ed  gas.)  

Another important point  t o  consider i n  ca lcu la t ing  the  poss ib le  conditions 
ex i s t ing  across  a boundary shock m v e  i s  t h a t  t h e  dens i ty  r a t i o  given by equa­
t i o n  ( 2 7 )  and, consequently, t h e  pressure and temperature r a t i o s  and t h e  Mach 
number Me a r e  phys ica l ly  poss ib le  only i f  



B2 -> A 


or  

chc ->I-) - (2 + $p) 

For y = 5 / 3 ,  t h e  curve of t h e  minimum poss ib le  chc f o r  pb/pe t o  be r e a l  
f o r  specif ied % i s  shown i n  f igure  11. Note t h a t  t h i s  consideration a l s o  
does not r u l e  out negative values of Ch, (except a t  4 = l), but  does l i m i t  
t h e i r  magnitude. 

Results f o r  pos i t i ve  Ch, have been discussed above, f o r  which t h e  heat 

i s  conducted back through the  outflowing f l u i d ,  i n  t h e  same d i r ec t ion  as t h e  
heat  conduction occurs i n  the  physical  s i t u a t i o n  ex i s t ing  i n  a simple shock 
wave. We may now a l s o  consider t h e  p o s s i b i l i t y  of negative values of chc, 
f o r  which heat conduction i s  i n  t h e  opposite d i r ec t ion  t o  t h a t  i n  a simple 
shock wave, t h a t  is, i n  t h e  same d i rec t ion  as t h e  gas flow. A s  an example cal­
cu la t ions  were made f o r  Ch, = -0.1. The dens i ty  and pressure r a t i o s  and t h e  

entropy production a r e  shown i n  f igu re  12 .  A s  seen from f igu re  12, t h e  Mach 
number a t  t h e  boundary i s  l imi ted  t o  values l e s s  than 0.76 o r  g rea t e r  than 
1.57 f o r  t h i s  case.  Both roots  i n  equation (27) are shown i n  f igu re  12, and, 
as seen, t h e  branches of t he  curves corresponding t o  t h e  two roots  a r e  con­
nected a t  % = 0.76 and 1.57 s ince they have common values the re .  The 
entropy production f o r  t h e  branch corresponding t o  t h e  plus  s ign  i n  equation 
(27) i s  always negative, and i s  negative f o r  p a r t  of t h e  branch corresponding 
t o  t h e  minus s ign.  (Negative-entropy-production port ions of t h e  curves on 
f i g .  12 are character ized by dashed l i n e s . )  But t he re  do e x i s t  "low-speed" 
and "high-speed" port ions f o r  which A i s  > 0. For t h e  low % port ion A i s / R  
f o r  t he  branch corresponding t o  t h e  minus s ign  i n  (27) i s  so  s m a l l  as t o  be 
imperceptible on f igu re  7 f o r  Ch, = -0.1, but  it i s  pos i t i ve  near % = 0. 

No claim i s  made here regarding the  physical  exis tence of t h e  cases f o r  
negative Ch, f o r  t h e  following reason. AS pointed out by Hayes ( r e f .  22), 
existence of a gasdynamic d iscont inui ty  (which t h e  boundary shock i s  f o r  
Reb = w) depends on t h e  s t a b i l i t y  of t h e  phenomenon, both i n  t h e  l a rge  and i n  
t h e  s m a l l ,  i n  addi t ion  t o  s a t i s f a c t i o n  of t he  conservation l a w s  of mass, momen­
tum, and energy, t h e  equations of s t a t e ,  and t h e  second l a w  of thermodynamics. 
The cases with pos i t i ve  Ch, correspond t o  simple shock-wave so lu t ions  which 
a r e  known t o  be physical ly  r e a l i s t i c ,  t h a t  i s ,  t o  be s t a b l e  and e x i s t  i n  real­
i t y .  Although t h e  cases with negative chc do not correspond t o  so lu t ions  
known t o  be physical ly  r e a l i s t i c ,  and hence have not been proven t o  be s tab le ,  
t h e  p o s s i b i l i t y  of t h e i r  existence i s  not ru led  ou t .  I n  a given appl icat ion,  
t h e  a c t u a l  value of Ch, would be determined from appropriate  equations, as, 
f o r  example, i s  done i n  a l a t e r  sec t ion  i n  t h e  appl ica t ion  t o  rap id  vapor abla­
t ion .  It should be pointed out here t h a t ,  as + 0 with % > 1, t h e  

14 




- -  

boundary shock detaches. Thus, a t  l e a s t  for Ivtt, > 1, one may not expect t h e  
boundary shock wave t o  e x i s t  f o r  Ch, < 0 i n  some appl ica t ions ,  s ince  required 

jumps i n  t h e  flow proper t ies  may be accommodated by a detached shock. 

Equations a r e  presented above f o r  ca lcu la t ing  conditions across  a boundary 
shock wave f o r  given values of y ,  I$,,and chc. However, i n  a given problem, 
for example, one discussed i n  a l a t e r  sec t ion ,  one may wish t o  ca l cu la t e  t h e  
conditions f o r  given y ,  %, and pe/pb. The following equations a r e  presented 
f o r  convenience i n  t h a t  case.  ~n expression for [1+ (1/2)chC] from equa­
t i o n  (28) may be subs t i t u t ed  i n t o  (23) and (26) t o  obta in  

where 

which has t h e  so lu t ion  

(where only the  pos i t i ve  square root  i s  chosen i n  order t h a t  Pb/Pe -be POSi­
2


t i v e ,  s ince  B' i s  always p o s i t i v e ) .  I n  many cases ( B ' )  may be much g rea t e r  
than A, so  t h a t  it may be d i f f i c u l t  t o  obtain an accurate  number from (39a).
I n  those cases t h e  root  of (37) i s  computed more e a s i l y  from 

'b - A' 

'e B ' +  JT( B )  + A  

Calculation of Ch,> Te/Tb> and M, then follows from equations (28) ,  (29 ) ,  
and (30) .  

I n  l a t e r  work it w i l l  a l s o  be found convenient t o  make ca lcu la t ions  f o r  
given values of y ,  I$-,, and &. For t h a t  purpose t h e  following equations a r e  
given. Equation (3Ob) can be solved f o r  ( ~ ~ / p , ) ~as 
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Equation (29) becomes 

Since the  dens ty  r a t i o  i s  known from (bo) ,  t h e  pressure r a t i o  can be computed 
from 

and (1/2)chc can be found from equation (28),with use of (40) and (42a) ,  as 

St ruc ture  of a Plane Boundary Shock 

I n  order t o  ca l cu la t e  t h e  va r i a t ion  o f  t h e  flow var iab les  through t h e  
boundary shock wave, one may begin with the  in tegra ted  forms of equations ( 5 ) ,
(6), and (7)  and with t h e  boundary conditions (13) and ( 1 4 ) .  (Conditions (13) 
a r e  ac tua l ly  j u s t  de f in i t i ons  of t h e  symbols for t h e  boundary values.  To 
these  could be added: p = pb, T = Tby ?? = 'b ' e t c . ,  a t  x = xb = o+.) With 
use of t h e  appropriate  auxiliary expressions, including t h e  equations of  s t a t e ,  
(lo), t h e  d i f f e r e n t i a l  equations and boundary conditions may be put i n  terms 
of only two var iab les ,  u and T. Then it i s  convenient t o  make the  equations 
dimensionless by def ining and subs t i t u t ing  t h e  dependent var iables:  
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and a new independent var iab le  

r 4

With the  assumption Pr = cons t . ,  ; i s  proport ional  t o  k, s ince  cp i s  con­

s t a n t ,  bu t  t h e  va r i a t ion  of need not be fu r the r  spec i f ied  i f  t h e  r e s u l t s  
a r e  l e f t  i n  terms of t h e  independent var iab le  5 .  We now have t h e  equations: 

and the  boundary conditions 

I n  t h e  s p e c i a l  case considered here  for which = 1, it i s  convenient t o  
def ine 

Note, then, t h a t  
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Further def ine : 

0 - H - Hb 

so  t h a t  (47) i s  simply 

where, by de f in i t i on ,  

a t k = 0 , 0 = O  

and where, from t h e  boundary condi t ion (u), 

The only possible  so lu t ion  is ,  o f  course, 

Hence, equations (49), (5O), and (51) give 

and 

qc = 

from which a l so  equation (16) stems. Equation (46) then becomes, 

- = a u - b + r  CdE ­
dk U 

where, by de f in i t i on ,  
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( 5 3 )  

(54) 


( 5 7 )  



and t h e  boundary condition is: 

and where 

(There should be no confusion between t h i s  constant,  a, and t h e  speed o f  sound, 
a, used e a r l i e r  .) The so lu t ion  f o r  d2 > 0 (see  eq. (36a)), where 

d == = 2 a s 

i s  

from which, given y,  I$,,and Chc, one can ca lcu la te  5 versus E (or, given 
ju s t  t he  t w o  parameters b/a = 2B and c/a = A, one can f ind  5 versus aE; 
compare (25) and ( 5 8 )  f o r  t h e  case Ti = ne, dE/dg = 0 ) .  Then equation (56)-
gives T versus 5 ,  and f i n a l l y  one can f i n d  

and 

versus 6 .  Results f o r  a t y p i c a l  case ( y  = 5/3, 4 = 1, ch
C 

= 1/2) a r e  shown 
p lo t t ed  i n  f igure  13. 

The var ia t ion  of E with x, and hence of t h e  flow variables  with x, i s  
e a s i l y  found i f  is  given as a function of T. This var ia t ion  has been 
discussed by many authors i n  connection with t h e  shock-wave problem. The var­
i a t i o n  o f  E as a gas property,  f o r  which reference can be made t o  t h e  
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l i t e r a t u r e ,  i s  not considered here, as t h e  i n t e n t  w a s  simply t o  show how t h e  
boundary-shock-wave s t r u c t u r e  could be calculated,  i n  addi t ion t o  obtaining 
t h e  r e s u l t  (37)  needed i n  above developments. 

APPROXIMATE SPECIAL APPLICATION OF THE 
GENERAL THEORY TO RAPID VAPOR ABLATION 

The purpose of t h i s  sec t ion  i s  t o  make a ca lcu la t ion  of t h e  boundary 
shock wave near t h e  forward face of a b lunt  body having t h e  proper t ies  of a 
stone meteor en ter ing  t h e  e a r t h ' s  atmosphere under conditions f o r  which t h e  
boundary-shock phenomenon might be expected t o  occur. 

I n  an e f f o r t  t o  e l iminate  a l l  unnecessary complications, a number of 
i dea l i za t ions  and approximations a r e  used i n  t h e  present  appl ica t ion .  Con­
s i d e r  t h e  same assumptions used i n  the  development of t k e  theory above. The 
a p p l i c a b i l i t y  of t h e  proper t ies  of a per fec t  gas with Fr = 1 i n  t h e  vapor 
from a stone meteor will be discussed l a t e r .  The assumption of steady flow 
i s  here  one of quasi-steady flow, f o r  which time der iva t ives  a r e  neglected i n  
comparison t o  space der iva t ives ,  with forces  i n  t h e  body, o r  w a l l  mass, 
replaced by acce lera t ions  of t h e  body. The ab la t ing  surface i s  considered t o  
be receding back i n t o  t h e  l i q u i d  mater ia l  with constant r e l a t i v e  speed us, so 
t h a t  i n  t h e  coordinate system of f igu re  l ( c ) ,  t h e  surface x = 0 is  s ta t ion­
a ry  and t h e  w a l l  ma te r i a l  i s  moving toward t h e  surface with constant ve loc i ty  
us. Assume t h a t  very l i t t l e  heat rad ia t ion  i s  emitted o r  absorbed within t h e  
shor t  dis tance t o  t h e  r i g h t  of b i n  f igu re  l ( c ) ,  bu t  t h a t  a l l  r ad ia t ion  i s  
absorbed a t  t h e  surface,  within t h e  very s m a l l  d is tance E i n  f igure  l ( c ) .  
Assume a l so  t h a t  no chemical or phase changes take  place t o  the  r i g h t  of xb
and t h a t  only vapor i s  blown o f f .  

With very l a rge  Reb, t h e  region of possible  rap id  var ia t ions  under 
considerat ion i n  t h e  flow near t h e  surface i s  very t h i n ,  so t h a t  considerat ion 
of one-dimensional flow out of a plane surface gives a va l id  approximation and 
conditions (14) are t h e  appropriate  f i r s t -o rde r  ou ter  boundary conditions.  
The one-dimensional equations of motion which apply t o  the  mater ia l  regard less  
of i t s  phase, and hence which can be used t o  r e l a t e  conditions t o  the  l e f t  of  
x = 0 ( i n  t h e  unvaporized s t a t e )  t o  those i n  t h e  flowing-vapor s t a t e  a r e  given 
by ( 5 ) ,  (6), and (7),or i n  t h e i r  in tegra ted  form: 

pu = m = constant 

pu2 - f = constant 

pue + -1 2 pu3 + q - up = constant J 

Equations (1)through (15) apply f o r  x > 0. The region from s t o  b i n  f ig­
u re  l ( c )  i s  t r e a t e d  as being i n f i n i t e l y  t h i n ,  so  t h e r e  a r e  jump discontinui­
t i e s  i n  ve loc i ty  and dens i ty  at x = 0 due t o  t h e  phase change. To t h e  l e f t  
of x = 0, t h e  compressive stress i s  -f, t h e  equation of state i s  
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p = ps = constant,  (x < 0 )  

and t h e  heat flux i s  

where k i s  appropriate  t o  t h e  state of t h e  mater ia l  a t  t h e  p a r t i c u l a r  loca­
t i o n  x. With subscr ip ts  a, f ,  and s denoting values a t  t h e  respect ive 
locat ions:  a r b i t r a r y  point  ins ide  t h e  w a l l  a t  t h e  cold s o l i d  s t a t e  ( X a ) ,  
fus ion in te r face  (xf), and surface j u s t  ins ide  radiation-absorption and vapor­
i za t ion  in t e r f ace  (xs = 0-), one can wri te  f o r  t h e  i n t e r n a l  energy i n  x < 0 :  

where csoz and cZiq a r e  t h e  spec i f i c  heats  i n  t h e  s o l i d  and l i qu id ,  taken t o  
be constant,  and Lf i s  the  l a t e n t  heat of fusion. 

For x > 0 t h e  so lu t ion  t o  equations (65) i s  given i n  t h e  above sect ion 
on t h e  general  theory o f  t h e  boundary shock wave. 

For x < 0 equations (65), (66),  and (67) give 

fa = f, 

which simply determines t h e  temperature d i s t r i b u t i o n  ins ide  t h e  wall and, 
hence, r e l a t e s  t h e  heat conduction and temperature a t  t h e  surface (x  = 0-) t o  
t h e  heat conduction and temperature a t  point  a ins ide  t h e  w a l l .  By defin­
i t i o n ,  xa i s  i n  t h e  cold i n t e r i o r  of  t h e  wall, where T = Ta = constant and 
dT/dx = 0, so t h e  term ka(dT/dx), i n  (69) i s  zero.  

To r e l a t e  t h e  conditions across t h e  surface a t  x = 0, equations (65) 
take t h e  form: 
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b = = ( 7 0 4  

Noting from equations (7Oa) and (7Ob) t h a t  

and subs t i t u t ing  t h i s  i n t o  ( ~ O C ) ,  we f i n d  

The i n t e r n a l  energy change across  x = 0 i s  approximately 

f o r  vaporization e i t h e r  a t  low r a t e s  o r  a t  high r a t e s ,  where i s  the  
l a t e n t  heat of vaporization f o r  low r a t e s  ( see  appendix B ) .  It i s  convenient 
t o  define (using eqs. (68) and (73)):  

which i s  t h e  heat  t h a t  must be t r ans fe r r ed  t o  a u n i t  m a s s  t o  r a i s e  it from the  
cold state a t  temperature Ta t o  t h e  vapor s t a t e  a t  temperature %, includ­
ing a l l  phase changes. (Note t h a t  T), has been taken t o  be equal t o  T,; 
see appendix B . )  Then the  terms 
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i n  equation (72) can be  replaced, using (69),by 

PbUb - RTb) 

Equation (72) i s  fu r the r  s impl i f ied  by using 

ub - = ub(l - Pb/Ps) M ub (77)  

t o  obtain 

For = 1, it w a s  shown above t h a t  t h e  so lu t ion  f o r  t he  vapor flow i s  possi­
b l e  only if q, = TLI (eq.  ('37)), with which we have f i n a l l y  

where 5, , given by equation (74b),  i s  a l i n e a r  funct ion of Tb. 

For given values of t h e  incident  r ad ia t ive  heat flux (-qr) and t h e  
ex terna l  pressure (pe ) ,  t h e  above equations ( including t h e  equations f o r  t h e  
boundary shock i n  t h e  previous sec t ion )  a r e  s u f f i c i e n t  t o  determine t h e  
boundary-shock so lu t ion  i n  terms of two unknown quan t i t i e s ,  say g, and Pbub. 
Some approximate equations descr ibing t h e  vaporization process may be used t o  
r e l a t e  g, and PbUb t o  t h e  other  parameters of t h e  problem, and thus t o  
complete t h e  determination, as described i n  t h e  remaining paragraphs of t h i s  
sec t ion .  

The r a t e  of vaporization, or t h e  mass f lux,  depends on t h e  v e l o c i t i e s  of 
t h e  molecules leaving t h e  surface during t h e  phase change, and hence on the  
temperature a t  vaporization. For present  purposes, l e t  us accept t he  roughly 
approximate r e l a t i o n  used by 'dpik ( r e f .  31, p .  24) : 

where 'b i s  t h e  vapor dens i ty  a t  sa tu ra t ion  pressure and (1/2)Yx i s  t h e  
average component of molecular ve loc i ty  i n  t h e  +x d i r ec t ion .  For t y p i c a l  
meteor i t ic  stone,  t h i s  reduces ( ref .  31, p.  161) t o :  

t 



With use of t h e  equation of s t a t e  (lo), equation (80b) gives d i r e c t l y  

.. 
For meteor i t ic  stone,  Opik gives ( r e f .  31, p .  160) values f o r  t h e  mean atomic 
weight as 23 and t h e  mean molecular weight of vapors as 50.  Hence, 
R = Ru/(50 gm/mole) = 1.66 x lo6 cm2/sec2 OK, where % i s  t h e  universa l  gas 
constant .  Since t h e  mean molecular weight i s  about twice t h e  mean atomic 
w e i g h t ,  we assume t h e  gas mixture can be approximated as a pe r fec t  diatomic 
gas with y = 7/5 and cp = yR/(y - 1) = (7/2)R = 5.8 x 106 cm2/sec2 OK. 
(These values seem t o  be r e a l i s t i c ,  s ince  cp f o r  t h e  vapor i s  then about 
ha l f  t h e  value of t h e  l i q u i d  spec i f i c  heat given by 'dpik as 1.1 x lo7. By way
of comparison, t h e  spec i f i c  hea t ,  cp, of water vapor i s  about one-half t h e  
spec i f i c  heat  of l i q u i d  water . )  The r e s u l t  from equation ( 8 0 ~ )i s  then 

The vapor pressure,  %, and t h e  bo i l ing  temperature, %, may be r e l a t e d  
approximately by Clapeyron' s equation: 

Clapeyron's equation i s  derived by assuming t h a t  t h e  phase t r a n s i t i o n  takes  
place revers ib ly  a t  constant temperature and pressure while t h e  entropy and 
s p e c i f i c  volume ( o r  densi ty)  change ( r e f .  32,  p .  317; see a l s o  appendix B ) .  
S t r i c t l y  speaking, therefore ,  Clapeyron's equation would apply only t o  vapori­
za t ion  a t  low r a t e s .  The use of Clapeyron's equation as a reasonable gross 
approximation r e l a t i n g  g, t o  Tb i n  t h e  present appl ica t ion  with higher 
vaporizat ion rates i s  j u s t i f i e d  because o f :  (1)t h e  exponential  ( r ap id ly  
varying) dependence of g, on Tb (see appendix B ) ,  and (2) t h e  f a c t  t h a t  i f  
one makes a gross i n t u i t i v e  modification o f  Clapeyron's equation t o  account 
f o r  t h e  viscous e f f e c t s  and t h e  va r i a t ion  of  pressure during t h e  vaporizat ion 
process,  t h e  r e s u l t s  of t h e  ca lcu la t ions  a r e  not s i g n i f i c a n t l y  d i f f e ren t  from 
those obtained using Clapeyron's equation (see appendix B and numerical 
r e s u l t s  given below). 

For t h e  appl ica t ion  t o  t h e  high-speed meteor composed o f  t h e  t y p i c a l  
meteorit ic-stone mater ia l ,  6pik ( r e f .  31, p .  161) gives t h e  mean bo i l ing  point  
as 2960' K ( a t  760 mm Hg or  1.013 x lo6 dynes/cm2) which can be used as t h e  



- 

reference value i n  equstion (81). The value f o r  R i s  estimated above, and 
L, can be taken from Opik's da ta  (given below). For reasons t h a t  will become 
apparent,  it i s  expedient t o  rewr i te  equation (79) as a r e l a t ionsh ip  between 
qr and Tb i n  terms of known quan t i t i e s ,  using equation (81) i n  t h e  form 

'b 

1 dy-ne/cm" 

and t h e  equations 

The r e s u l t  i s  

where cab = cab(Tb) i s  given by equation (74b) and where, from 'dpik ( r e f .  31, 
pp. 61 and 161), values of t h e  required constants i n  (74b) f o r  t h i s  case are: 

Lf = 2.65 x lo9 erg/gm, L, = 6.o:, x 10" erg/@ 

Csol - 8.95 x lo6 erg/@ OK, cziy = 1.1x lo7 erg/gm OK 

Ta = 200' K T~ = 18000 K 

If t h e  r ad ia t ive  heat  f lux t o  t h e  w a l l  causing t h e  ab la t ion ,  -qr, and 
t h e  ex terna l  pressure,  pe, a r e  spec i f ied ,  then  t h e  so lu t ion  o f  t h e  equations 
f o r  t h e  boundary shock wave i s  determined and can be ca lcu la ted  by i t e r a t i o n  
on equation (84).  Thus, a t r i a l  value of Q may be chosen and i t e r a t e d  upon 
u n t i l  t h e  proper value f o r  qr i s  obtained. Then g, i s  determined by equa­
t i o n  (82), t h e  r a t i o  pe/pb can be computed, and equations ( 3 9 ) ,  (28), (29), 
and (30) can then  be used successively t o  f i n d  pe/pb, Chc, Te/'&, and Me. 

The r ad ia t ive  heat  flux, -qr, i s  a i'unction o f  conditions of a p a r t i c u l a r  
problem. It depends, f o r  example, on a body radius ,  speed, and a l t i t u d e .  
Representative values of -qr and pe used a r e ,  respect ively,  17,300 wdtts/cm2 
and 7.55 x l o 5  dynes/cm2, found from a s impl i f ied  approximate ca l cu la t ion  of  
flow i n  t h e  forward region of a spher ica l  body of 4.62 m rad ius  moving a t  
15 km/sec ai; an a l t i t u d e  o f  60 km i n  t h e  e a r t h ' s  atmosphere. The ca lcu la t ions  
as out l ined  here in ,  using the  numbers given above corresponding t o  s tone 
meteors, l ead  t o :  % = 0.333, % = 2720' K, pb = 3.345 X lo5 dynes/cm2, 



'b = 7.41 x gm/cm3,  Ub = 2.65 x 104 cm/sec, pe/% = 2,257, P,/P, = 2.215, 
M, = 0.149, and Ch, = 13.772. If t h e  "modified Clapeyron's equation" is  used 

(appendix B ) ,  t h e  above numbers a r e  t h e  same except f o r  replacement of corre­
sponding values by: -9, = 17,120 watts/cmZ, rb = 4.58 m y  Tb = 2 , 8 8 0 ~K, 

'b = 7.00 x 10-~gm/cm3, and Ub = 2.73 x io4 cm/sec. 

CONCLUDING REMARKS 

An attempt has been made t o  present an introduct ion t o  a possible  
phenomenon defined herein as a boundary shock wave, a t h i n  layer  of gas 
through which viscous e f f e c t s  decay i n  very high-speed mass t r a n s f e r  accompa­
nied by la rge  heat  t r ans fe r .  The general  theory of laminar f l o w  through a 
plane boundary shock was developed. Results from the  general  theory include 
calculat ions of  t h e  conditions ex i s t ing  across a boundary shock, and of t he  
i n t e r n a l  boundary-shock s t ruc tu re ,  f o r  given conditions a t  t h e  boundary. The 
so lu t ion  of t h e  governing equations w a s  reduced t o  closed-form expressions f o r  
t he  quan t i t i e s  of  i n t e r e s t  under t h e  r e s t r i c t i o n s  of a per fec t  gas flowing a t  
constant t o t a l  enthalpy. Numerical r e s u l t s  were obtained and p lo t t ed  f o r  t h e  
case where t h e  spec i f i c  heat  r a t i o ,  y ,  i s  5 / 3 .  

This theory was then applied t o  rapid vapor ab la t ion  from a body with 
f l i g h t  conditions appropriate t o  a possible  meteoric f i r e b a l l  i n  t h e  e a r t h ' s  
amosphere. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  C a l i f . ,  Sept. 22, 1965 
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APPENDIX A 

PRINCIPAL NOTATION 

constants defined by equations (26) 


speed of sound (eq.  (21) )  


c r i t i c a l  speed of sound defined by equation (23) 


constant defined by equation ( 2 3 )  


components of random molecular ve loc i ty  i n  the  d i r ec t ion  of x,  and 

perpendicular t o  x, respec t ive ly  


spec i f i c  hea t s  a t  constant volume and pressure,  respec t ive ly  


spec i f i c  i n t e r n a l  energy 


s t r e s s ,  o r  "surface force" per  u n i t  a rea  


dimensionless t o t a l  spec i f i c  enthalpy (eq.  (49 ) )  

spec i f i c  enthalpy (eq.  (9)  ) 

thermal conduct ivi ty  

cha rac t e r i s t i c  length,  espec ia l ly  width of vapor region 

l a t e n t  hea ts  of fusion and vaporization 

viscous length,  pb/pbub 

UMach number, a 

m a s s  f l u x  (eq.  

- pep
Prandt l  number based on p, 

thermodynamic gas pressure 

heat f l u x  ( t o  t h e  right i n  f i g .  l(c)) 

conduction heat  f l ux  (eq. (1)) 

rad ia t ive  heat  f lux 
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rb 

S 

T 
-
T 

t 

U 

-
U 

AeS 

A iS 

AS 


Y 


'ab 

gas constant (eq. (10)) 


Reynolds numbers defined i n  f igu re  1 


body rad ius  

s p e c i f i c  entropy 

temperature 

dimensionless temperature (eqs .  (44)) 

time 

ve loc i ty  i n  t h e  x di rec t ion  

dimensionless ve loc i ty  (eqs .  (44 ) )  

space coordinate,  pos i t i ve  t o  t h e  r i g h t  i n  f igure  l ( c )  

change i n  spec i f i c  entropy due t o  heat  t r a n s f e r  (ex terna l  
process)  across  a boundary shock (eq. (33)) 

change i n  spec i f i c  entropy due t o  i r r e v e r s i b l e  ( i n t e r n a l )  
processes,  t h a t  i s ,  entropy production, across a boundary 
shock (eqs . (31)) 

t o t a l  change i n  spec i f ic  entropy across  a boundary shock, 
se - Sb (eq. (33) f o r  a pe r fec t  gas)  

r a t i o  of spec i f i c  heats ,  	-cP 
C V  

heat  t h a t  must be t r ans fe r r ed  t o  a u n i t  mass of mater ia l  t o  
r a i s e  it from the  cold s t a t e  a t  temperature Ta t o  t h e  
gaseous s t a t e  a t  temperature % (eqs.  (74)1 

defined by equation (31) 

def ined by equation (4 )  

dimensionless independent var iab le  defined by equation (45) 

m,ass dens i ty  per un i t  volume 

defined by equation (1) 

X 



Subscripts 

dTa value ins ide  t h e  w a l l  (x < 0) where k -= 0 
dx 

b 

e value i n  t h e  gas outs ide t h e  boundary shock wave (x 3 w) (or outside 

value a t  t h e  boundary i n  t h e  gas (x = O+) 

t h e  boundary l aye r  i n  f i g .  1) 

S value a t  t h e  surface,  ins ide  t h e  w a l l  (x = 0-)  

1, 2 values upstream and downstream, respect ively,  of a simple shock wave 

Superscript  

* condition where u = a 



APPENDIX B 

APPROXIMATE THERMODYNAMIC EQUATIONS FOR RAPID VAPORIZATION 

Two d i f f e ren t  approximate formulations f o r  t h e  vaporization process a r e  
considered. The f i rs t  i s  w e l l  known, but ,  f o r  quant i ta t ive  accuracy, i t s  use 
might be l imi ted  t o  f a i r l y  low rates of vaporization. However, t h e  r e s u l t s  
serve as a foundation fo r  t h e  proposed formulas applying t o  more rap id  
vaporization. 

The f i rs t  l a w  of thermodynamics f o r  an element of mass undergoing a phase 
change i s  

T ds = de + p dv 

= d h - v d p  

= cv dT + T ( - v  dv 

where v l / p  i s  t h e  volume per  u n i t  mass. Denote t h e  i n i t i a l  s t a t e  
( l i qu id )  by subscr ipt  i and t h e  f i n a l  s t a t e  (vapor) by subscr ipt  f .  

1. F i r s t  approximate method.-

If t h e  phase change takes  place a t  a low r a t e ,  t h e  process i s  near ly  
revers ib le ,  isothermal, and i sobar ic .  The heat t r ans fe r r ed  revers ib ly  t o  t h e  
element, per  u n i t  m a s s ,  o r  t h e  l a t e n t  heat of vaporization, is, from 
equation (Be), 

L, = T(Sf - s i )  = hf - h i  0344 

= ef - ei + p(vf - vi) 

ef - ei + pvf 

= e f - ei + RT 

Since p and T a re  constant during the  process, 

P = P(T) 

so t h a t  



- -  

In t eg ra t ion  of equation (B3) f o r  t h e  process a t  constant T gives then 

L, = T 3 (vf - vi> T ­dP Vf
dT dT 

Use of t h e  per fec t  gas equation of state: 

PfVf  = RTf 

i n  (B7) then gives 

Equation (B9) i n t eg ra t e s  (for constant Lv) t o  give t h e  well-known Clapeyron's 
equation fo r  t h e  pressure t o  be 
( t h e  sa tu ra t ion  vapor pressure)  
temperature: 

pf 

For a vaporization process 

overcome by t h e  molecules escaping t h e  l i q u i d  
as a funct ion of t h e  vaporization (bo i l ing )  

- e%(&-e) 
rapid  enough t h a t  it i s  not revers ib le  and t h e  

pressure i s  not  constant,  Clapeyron's equation should s t i l l  provide a reason­
able  f irst  approximation f o r  pf as a funct ion of Tf f o r  t he  following rea­
son. The va r i a t ion  of pf with Tf i s  exponential ,  so  t h e  va r i a t ion  o f  pf
due t o  changes of p during t h e  process and due t o  i r r e v e r s i b i l i t y  w i l l  be 
negl ig ib le  i n  comparison t o  the  dependence on T i f  those e f f e c t s  a r e  not 
l a rge .  

2. Second approximate method.-

For higher r a t e s  o f  vaporization t h e  process i s  not revers ib le  because of 
viscous d i s s ipa t ion ,  and not i sobar ic  because of s ign i f i can t  viscous s t r e s s ,  
which makes t h e  normal s t r e s s  on a f l u i d  element d i f f e ren t  from purely thermo­
dynamic pressure.  The following estimate of t he  re la t ionships  among t h e  ther ­
modynamic var iab les  for t h e  vaporizat ion process i s  proposed as an improved 
approximation i n  t h a t  case.  

The steady-flow momentum equation i s  

p + pu2 - T = constant 
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For t h e  f i rs t  approximation above it was i m p l i c i t l y  assumed t h a t  both pu2 
and -7 were negl ig ib le ,  so  t h a t  p w a s  constant during t h e  process of  t h e  
phase change. For t h i s  improved approximation, assume only t h a t  

(with t h i s  condition remaining as a l i m i t a t i o n  on t h e  use of t h e  f i n a l  resu l t s ) .  
Then, during t h e  vaporization, we have, approximately, 

For rap id  vaporizat ion,  t h e  t o t a l  heat supplied t o  a u n i t  mass during 
vaporization could be denoted, using equation (B2), as 

Although b* may be qu i t e  d i f f e ren t  from t h e  value f o r  slow vaporiza­
t i o n  r a t e s ,  equation (B4b) may s t i l l  be r e t a ined  as a va l id  approximate 
energy r e l a t i o n  f o r  high r a t e s .  The reasoning i s  as follows: I n  t h e  process 
of  vaporization from a l i q u i d  surface,  t h e  ind iv idua l  molecules escaping t h e  
intermolecular bonds (close-range forces)  acquire  a c e r t a i n  amount of  p o t e n t i a l  
energy, which, i n  t h e  macroscopic sense, i s  thought of as increased i n t e r n a l_ _  
energy of t h e  f l u i d .  This change i n  i n t e r n a l  energy of t h e  f l u i d ,  or t h e  
value of t h e  p o t e n t i a l  energy added t o  t h e  ind iv idua l  molecules, i s  assumed 
not t o  be dependent on how fast t h e  in t e r f ace  between t h e  vapor and t h e  l i q u i d  
recedes i n t o  t h e  l i q u i d ,  t h a t  i s ,  on t h e  r a t e  of vaporization. Thus t h e  same 
internal-energy change i s  required f o r  rap id  vaporizat ion of t he  mater ia l  as 
under conditions of low-speed vaporization a t  t h e  same temperature. Since 

pf << pi, t he  enthalpy change i s  approximately 

hf - h .  = ef - ei + RT1 


Thus, f o r  t h e  same temperature and same ( ef - ei) , t h e  enthalpy change i s  t h e  
same f o r  high r a t e s  as fo r  low ra t e s ;  t h a t  is ,  

hf - h i  = ef - ei + RT = L, ( B W  

A n  addi t iona l  consequence of t h e  above arguments i s  t h a t  t he  temperature 
remains near ly  constant during vaporizat ion a t  a high r a t e  even though t h e  
pressure i s  changing and viscous e f f e c t s  a r e  important. Since h i  = hi(T) 
and hf = hf(T) and s ince  hf - h i  i s  t h e  same f o r  high r a t e s  as f o r  low 
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r a t e s  at  a given i n i t i a l  enthalpy, hi, and Tf = Ti f o r  low rates, it follows 
t h a t  Tf = T i  f o r  high r a t e s  of vaporizat ion as well .  

I n  order t o  understand more completely t h e  re la t ionship  between Lv and 
Lv* f o r  rap id  vaporization, consider t h e  following. Equations (B14) and 
( ~ 1 6 ) ,along with ( B l 3 ) ,  show t h a t  

The quant i ty  Lv* i s  d i f f e r e n t  from the  l a t e n t  heat f o r  low r a t e s ,  Lv, 
because of t h e  va r i a t ion  of p during t h e  process at  high r a t e s ,  o r ,  equiva­
l e n t l y ,  because of t h e  s ign i f i can t  va r i a t ion  of r .  The r e l a t ionsh ip  between 

l r f v  d r  i n  equation ( B 1 7 )  and t h e  i r r e v e r s i b l e  heat ing due t o  viscous dis­

s ipa t ion  i n  t h e  process can be found by f irst  wri t ing,  f o r  t h e  heat  addi t ion,  
per un i t  mass, t o  t h e  m a s s  element considered i n  equations ( B l )  t o  ( B 3 ) :  

where 

i s  t h e  heat t r ans fe r r ed  t o  t he  d i f f e r e n t i a l  element per u n i t  mass during t h e  
vaporization process, 

i s  the  heat f l ux  (pos i t i ve  i n  the  d i r ec t ion  of flow) composed o f  t h e  f l u x  of 
r ad ia t ion  being absorbed during t h e  process and f lux  of heat conduction, and 
where 

i s  t h e  heat added by viscous d i s s ipa t ion  per  un i t  mass of t h e  d i f f e r e n t i a l  
element. Now, from equation ( B l T ) ,  



where pu i s  constant f o r  t h e  vaporizat ion process,  by conservation of mass. 
With equation (B21), then, 

T d i s  

Thus t h e  d i f fe rence  between L, and L,* i s  due t o  t h e  work term 

-rfuf/pu = -rf/pf as wel l  as t o  t h e  i r r e v e r s i b l e  heat ing by viscous d iss ipa t ion .  

Even i f  t h e  i r r e v e r s i b l e  pa r t  of T ( s f  - si) i n  (B14) i s  much l e s s  than t h e  

revers ib le  p a r t  (which i s  t r u e  because of l a rge  qr being absorbed i n  t h e  

vaporization process) ,  &* can be s i g n i f i c a n t l y  d i f f e r e n t  from L, because 

t h e  r eve r s ib l e  p a r t  of T ( s f  - s i )  i s  d i f f e ren t  due t o  t h e  pressure change. 

However, as pointed out above, hf - h i  = L, remains t h e  same a t  a high vapor­

i z a t i o n  r a t e  as a t  a low r a t e .  


The vapor pressure,  pf ,  i n  Clapeyron's equation, ( B l O ) ,  i s  in t e rp re t ed  as 
the  "pressure t o  be overcome'' by t h e  molecules escaping t h e  l i qu id .  Since f o r  
rap id  vaporizat ion the re  i s  a.n addi t iona l  s t r e s s ,  -Tf,  t o  be overcome, l e t  us 
assume t h a t  pf i n  Clapeyron's equation can be replaced by pf - Tf t o  
obtain a rough approximate re la t ionship  between t h e  f i n a l  t o t a l  compressive 
s t r e s s  of t h e  process,  pf - T f ,  and t h e  temperature, Tf = Ti: 

Pref 

Recall  from k i n e t i c  theory ( f o r  a monatomic mater ia l )  t h a t  i f  t he  mater ia l  i s  
i n  equilibrium i n  t h e  f i n a l  s t a t e ,  as assumed i n  der iving Clapeyron's equation, 
then, 

- _c 

Pf  = L3 Pf (7+ e,,% = (Pclz>f 

( see  the  sec t ion  "Causes of  Boundary Shock Waves" f o r  terminology). Al so  from 
k ine t i c  theory i n  t h e  case of mechanical nonequilibriwn ( i . e . ,  s ign i f i can t  
v i scos i ty ) ,  

i s  regarded as t h e  quant i ty  l imi t ing  t h e  outflow of newHence, if (~3)~ 
vapor molecules (equal  t o  the  pressure i n  the  equilibrium case) ,  then it i s  
na tu ra l  t o  wr i te  as an approximation the  above modified Clapeyron equation, 
( B 2 4 ) ,  f o r  t h e  nonequilibrium (viscous) case.  Since t h e  re la t ionship  between 
pf and Tf now involves -rf, f o r  a given appl ica t ion  -rf would have t o  be 
determined from t h e  coupling with t h e  equations f o r  t h e  flow outs ide the  imme­
d i a t e  region of t h e  phase change. 
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Although t h e  i n t u i t i v e  r e s u l t ,  equation (B24), w a s  not derived rigorously, 
it i s  consis tent  i n  t h a t ,  as -rf 3 0, Clapeyron's equation i s  recovered. The 
use o f  t h i s  "modified Clapeyron's equation," (B24), i s  j u s t i f i e d  by t h e  f a c t  
t h a t  t he re  must be some such re la t ionship  character iz ing t h e  proper t ies  of  t h e  
material during t h e  rap id  vaporization, and t h e  r e s u l t s  obtained with i t s  use 
must be assumed t o  be qua l i t a t ive ly ,  r a the r  than quant i ta t ive ly ,  cor rec t .  
A l s o ,  equation (B24) i s  usefu l  i n  determining when Clapeyron's equation, (BlO), 
i s  va l id  quant i ta t ive ly .  If under given conditions both (B10) and (B24) give 
near ly  t h e  same quant i ta t ive  r e s u l t s ,  it can be assumed t h a t  those r e s u l t s  a r e  
accurate.  

35 




REFERENCES 


1. Friedrichs, K. 0.: Asymptotic Phenomena in Mathematical Physics. Bull. 

her. Math. Soc., vol. 61, no. 6,Nov. 1955, pp. 485-504. 


2. 	 Allen, H. Julian: On the Motion and Ablation of Meteoric Bodies. Aero­

nautics and Astronautics, N. J. Hoff and W. G. Vincenti, eds., Pergamon 

Press, N. Y., 1960,pp. 378-416. 


3. 	 Allen, H. Julian; and James, Nataline A,: Prospects for Obtaining Aero­

dynamic Heating Results From Analysis of Meteor Flight Data. NASA TN 

D-2069,1964. 


4. Gruntfest, Irving; and Shenker, Lawrence: Ablation. Int. Science and 

Technology, no. 19, July 1963,pp. 48-57. 


5* Scala, Sinclaire M.: A Study of Hypersonic Ablation. Rep. R5gSD438, 

General Electric Co., Sept. 30, 1959. 


6. Liepmann, H. W.; Narasimha, R.; and Chahine, M. T.: Structure of a Plane 

Shock Layer. Phys. of Fluids, vol. 5, no. 11,Nov. 1962, pp. 1313-1324. 


7. Taylor, G. I.; and Maccoll, J. W.: The Mechanics of Compressible Fluids. 

Div. H. of Aerodynamic Theory, vol. 111,W. F. Durand, ed., Julius 

Springer (Berlin), 1935. 


8. Courant, R.; and Friedrichs, K. 0.: Supersonic Flow and Shock Waves. 

Interscience Pub., N. Y., 1948. 


9- Goldstein, Sydney: Lectures on Fluid Mechanics. Interscience Pub., 

London, 1960. 


10. Liepmann, H. W.; and Roshko, A.: Elements of Gasdynamics. John Wiley and 

Sons, Inc., N. Y., 1957. 


11. Serrin, James: Mathematical Principles of Classical Fluid Mechanics. 

Handbuch der Physik, vol. VIII/l, Springer (Berlin), 1959, pp. 125-263. 


12. Becker, R.: Stosswelle und Detonation. Zeitschrift fur Physik, vol. 8, 
1922, pp. 321-362. Also NACA TM 505, 506, 1929. 

13 Thomas, L. H.: Note on Becker's Theory of the Shock Front. J. Chem. 

PhyS., V O ~ .12, 1944, pp. 449-453. 


14. Morduchow, Morris; and Libby, Paul A.: On a Complete Solution of the One-
Dimensional F l o w  Equations of a Viscous, Heat-Conducting, Compressible 
Gas. J. Aero. Sei., vol. 16,1949,pp. 674-684,704. 

15 Puckett, A. E.; and Stewart, H. J.: The Thickness of a Shock Wave in Air. 

Quart. Appl. Math., vol. VII, no. 4, Jan. 1950, pp. 457-463. 


36 




16. 

17 

18. 

1.9 

20. 

21. 

22. 

23. 

24. 

25 

26. 

27 

28. 

29 

von Mises, R.: On t h e  Thickness of a Steady Shock Wave. J. Aero. Sei. ,  
vole 17, 1950, PP- 551-554, 594. 

Meyerhoff, Leonard: An Extension of  t he  Theory of t he  One-Dimensional 
Shock-Wave Structure .  J. Aero. Sei. ,  vol. 17, 1950, pp. 775-786. 

Gilbarg, D.: The Existence and L i m i t  Behavior of t h e  One-Dimensional 
Shock Layer. h e r .  J. Math., vol.  73, 1951, pp. 256-274. 

Mott-Smith, H. M.: The Solution of t h e  Boltzmann Equation fo r  a Shock 
Wave. Phys. Rev., vol. 82, no. 6, June 15, 1931, pp. 883-892. 

Grad, Harold: P ro f i l e  of a Steady Plane Shock Wave. Comm. Pure and Appl. 
Math., vol.  5, 1952, pp. 257-300. 

Gilbarg, D.; and Paolucci, D.: The Structure of Shock Waves i n  the  Con­
tinuum Theory of Fluids.  J. Rational Mech. and Analysis, vol. 2, 1953, 
pp. 617-642. 

Hayes, Wallace D.: Gasdynamic Discontinuities.  Princeton Aeronautical 
Paperbacks, no. 3, Princeton Univ. Press, Princeton, N .  J . ,  1960. 

Lighth i l l ,  M. J.: Viscosity Effects i n  Sound Waves of  F in i t e  Amplitude. 
Surveys i n  Mechanics. G.  I. Taylor Anniversary Volume, G.  K. Batchelor, 
and R.  M. Davies, eds., Cambridge Univ. Press, London, 1956, pp. 250­
351 

Sherman, F. S.; and Talbot, L.: Experiment Versus Kinetic Theory for 
Rarefied Gases. Rarefied G a s  Dynamics, Proc. of t h e  F i r s t  I n t .  Symp. 
on Rarefied G a s  Dynamics, R.  M. Devienne, ed., Pergamon Press, London, 
1960, pp. 161-191. 

Talbot, L.: Survey of t he  Shock Structure Problem. ARS Jour., vol. 32, 
no. 7,  July 1962, pp. 1009-1016. 

Heaslet, Max. A.; and Baldwin, Barret t  S.: Predictions of the  Structure 
of Radiation-Resisted Shock Waves. Phys. of Fluids,  vol.  6 ,  no. 6, 
June 1963, pp. 781-791. 

Scala, S. M.; and Talbot, L.: Shock Wave Structure  With Rotational and 
Vibrational Relaxation. Rarefied G a s  Dynamics , Proc . of t h e  Third I n t  . 
Symp. on Rarefied G a s  Dynamics, J. A. Laurmann, ed., Par is ,  1962, 
vol.  I, Academic Press, N.  Y., 1963, pp. 297-314. 

de Groot, S. R.: Thermodynamics of I r revers ib le  Processes. North-Holland 
Pub. Co., Amsterdam, 1951. 

Prigogine, I.: Introduction t o  Thermodynamics of I r revers ib le  Processes. 
Second rev. ed., Interscience Pub., N.  Y. ,  1961. 

37 

I.. 




30. 	 Katzen, Elliot D.; and Kaattari, George E.: Flow Around Bodies Including

Effects of High Angles of Attack, Nonequilibrium Flow, and Vapor Injec­

tion. In AIM Entry Technology Conf. Proceedings, Williamsburg, Oct. 

1964, pp. 106-117. 

31. 	 Opik, Ernst J.: Physics of Meteor Flight in the Atmosphere. Interscience 

Pub., N. Y., 1958. 


32. 	 Zemansky, Mark W.: Heat and Thermodynamics. Fourth ed., McGraw-Hill, 
N. Y., 1957. 

38 




---- Inviscid region 

Ue­
/-

Viscous region 8 

(a) Boundary layer 

Inviscid I Viscous Inviscid 
region I region region 

I q

I 
+8-= 
I 

as Rel E -
PI 

-GO,(Au # O )  

(b) Shock wave 

HIViscous Inviscid

i!region 
region 

('b -u e z0 ;  implies chC,  Mb Z O )  J 
sb e 
Y p 

X ( c )  Boundary shock wave 

Figure 1.-Analogy of boundary shock wave with boundary layer  and shock wave. 
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Figure 2.- Boundary shock wave in f l o w  with stagnation p o i n t .  
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Figure 9.- Temperature r a t i o  across  a boundary shock ( y  = 5 / 3 ,  = 1). 
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